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Abstract

We discuss the development of a numerical algorithm, and solver capable of performing large-eddy simulation in the

very complex geometries often encountered in industrial applications. The algorithm is developed for unstructured

hybrid grids, is non-dissipative, yet robust at high Reynolds numbers on highly skewed grids. Simulation results for a

variety of flows are presented.
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1. Introduction

The Navier–Stokes and continuity equations for incompressible flow are
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Note that the density is assumed constant, and absorbed in the pressure throughout this paper. Large-eddy

simulation (LES) is an unsteady, three-dimensional simulation methodology where the Navier–Stokes

equations are spatially filtered, the resolved scales of motion are directly computed, and the influence of the

filtered scales on the resolved scales ismodeled. Spatial filtering (denoted by the overbar) of theNavier–Stokes

equations with a filter that commutes with the spatial and temporal derivatives yields the LES equation
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Here, sij ¼ uiuj � uiuj is the subgrid stress, and is modeled.
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LES and direct numerical simulation (DNS) have largely been used to study turbulent flows in simple

configurations [27]. The primary reason for this is computational cost. Prediction of engineering flows relies

on the Reynolds-averaged Navier–Stokes equations (RANS), where turbulence models for hu0iu0ji allow the
time-averaged or ensemble-averaged solution to be directly obtained (the brackets h i denote the average,

and the primes denote fluctuations about the average). However, there is increasing interest in applying

LES to complex problems because of its greater accuracy over RANS, particularly for phenomena such as

turbulent mixing and aerodynamic noise. Unfortunately, the numerical methods used to solve the RANS

equations are not directly applicable to LES. RANS typically uses upwinded numerical methods which

provide numerical dissipation and make the solution procedure robust. When used for LES, upwinding

compromises accuracy (e.g. [24]) since the numerical dissipation competes with, and often overwhelms the

effect of the subgrid model and molecular viscosity.
By definition, the dissipative scales are not resolved by the grid in LES. In practice, this leads to

numerical instability if straight-forward, non-dissipative central-difference schemes are used. The insta-

bility is related to aliasing errors that occur when non-linear products are computed in physical space (see,

e.g. [25]). One solution to this problem is to develop non-dissipative numerical schemes that discretely

conserve not only first-order quantities such as momentum, but also second-order quantities such as

kinetic energy (e.g. [2,4,14,22]). Discrete energy conservation ensures that the flux of kinetic energy,P
cvs uioðuiujÞ=oxj only has contributions from the boundary elements (the summation is over all the

control volumes of the mesh). This makes the solution robust without the use of numerical dissipation.
Note that satisfying one constraint discretely, does not ensure the other – both constraints have to be

simultaneously enforced when deriving the algorithm. The Harlow–Welch algorithm [8] possesses this

property on structured grids, and has therefore been widely used for LES on structured grids in simple

geometries.

There is considerable incentive to develop LES on unstructured grids. In addition to reducing the

number of mesh nodes, unstructured grids significantly reduce the amount of time spent on grid generation.

Although a variety of numerical methods exist to compute flows on unstructured grids (see, e.g. [3]), their

application to LES is scarce. Most methods have been developed either for laminar flow or for the steady
RANS equations. An exception is the work of [11] who performed LES of high Reynolds number flow past

the NACA 4412 airfoil using the Galerkin/least-squares finite element method [9].

Not much attention has been paid to discrete energy conservation on unstructured grids. Exceptions are

Perot [31] and Zhang et al. [34] who discuss discrete energy-conservation for staggered schemes on trian-

gular or tetrahedral unstructured grids. Also discussed are the roles of discrete operators for the curl and

divergence in ensuring kinetic energy conservation. Such operators for unstructured quadrilateral meshes

are also discussed by Hyman and Shashkov [10], who term them ‘‘mimetic schemes’’. Related work is that

by Amit et al. [1] who use the notion of dual or co-volumes to develop a staggered algorithm for two-
dimensional triangular grids. A similar formulation is developed and analyzed in detail by Nicolaides [28]

and Nicolaides and Wu [29] for the divergence–curl, and Navier–Stokes equations in two and three di-

mensions. A colocated, implicit formulation is developed by Kim and Choi (2002) and applied to laminar,

two-dimensional flow on hybrid unstructured grids.

None of the above finite-volume formulations have been applied to DNS or LES. This paper develops a

finite-volume algorithm for LES on unstructured grids with arbitrary elements. The formulation is non-

dissipative; yet robust and accurate at high Reynolds numbers on highly distorted grids. Discrete energy-

conservation was found to be extremely important in ensuring this behavior. Detailed validation studies are
presented for a wide variety of flows – Taylor problem, isotropic turbulence, flow over a circular cylinder

and the flow in a coaxial combustor. Also shown are results from simulations in the exceedingly complex

geometry of a commercial gas-turbine engine combustor.

The paper is organized as follows. Section 2 generalizes the Harlow–Welch formulation to unstructured

grids using a rotational form of the convection terms. While elegant, this formulation is found lacking when
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extended to three-dimensions. In particular its restriction to tetrahedral elements, and lack of robustness on

skewed grids are serious practical limitations. An alternative formulation is therefore derived in Section 3

for use on arbitrary elements. Section 3.2 discusses simulation results for a variety of flows to show that
robust, accurate solutions are now obtained at high Reynolds numbers in very complex geometries on

highly skewed grids. The paper concludes with a brief summary in Section 4.
2. Staggered rotational formulation

The popular staggered formulation by Harlow and Welch [8] on structured grids is extended to un-

structured grids of triangles in two-dimensions and tetrahedra in three dimensions as follows. Fig. 1 shows
a single triangular element. Note that the pressure is stored at the circumcenter of the element (the inter-

section of the perpendicular bisectors of the edges), while the velocities normal to the edges of the triangle

are stored at the edge-centers.

Analogous to the procedure on a structured grid, the velocity components normal to the edges are time-

advanced using the governing equations, while the components tangential to the edges are obtained by

interpolating the velocities normal to the other edges. Consider an edge. Denote the normal to the edge by
~n. In two dimensions, there are two volumes that straddle each edge, and are denoted by the indices 1 and 2,

respectively. Likewise, the two nodes of each edge are assigned the indices 1 and 2. The edge-normal is
defined so that it points from volume 1 to volume 2, and the tangent to the edges is defined such that it

points from node 1 to node 2.

The normal velocity component vn is equal to~u �~n. The dot product of the Navier–Stokes equations (Eq.

(1)) with ~n yields the governing equation for vn; i.e.,
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where, ~x ¼ r�~u denotes the vorticity. It is easily seen that in 2D,

~u
�

� ~x
�
�~n ¼ xvt; ð4Þ
Fig. 1. The staggered positioning of variables on an unstructured mesh of triangles is contrasted with that on a structured mesh.
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where vt denotes the tangential velocity component. Consider next the viscous term. We have the vector

identity,

r2~u ¼ �r� ~xþr r �~u
� �

: ð5Þ

If the velocity field is divergence-free, this implies in 2D that

r2~u
� �

�~n ¼ � ox
ost

; ð6Þ

where st denotes the tangential derivative along the edge. To time-advance the momentum equation, we

therefore need the vorticity at the nodes and the edge-centers, tangential velocity at edge centers, total
kinetic energy and pressure at the cell-centers.

The vorticity at the nodes (or more generally the curl of a vector whose edge-normal component is

known) is computed using Green�s theorem, i.e.,Z
A
xdA ¼

Z
C
~u � d~l: ð7Þ

The area over which the integration is performed (Adual) is shown in Fig. 2, and is obtained by joining the

circumcenters of the triangles that surround the node. The dashed lines indicate the boundaries of this area.

It is easily seen that the velocity components parallel to the edges of this area are normal to the edges of the

triangles that make up the area. The vorticity at the node �n� is therefore computed as

x ¼ 1

Adual

X
e

vneld; ð8Þ

where ld is the distance between the circumcenters of the triangles that constitute the dual mesh (see Fig. 2).
This procedure is easily applied in an edge-based data structure, where the volumes and nodes that

straddle each edge are stored. The nodal vorticities may therefore be calculated by looping over the edges,

evaluating the distance between the circumcenters of the neighboring volumes, computing the product of

the normal velocity and the distance between circumcenters and adding the product to one of the nodes of

the edge, and subtracting it from the other. Once the nodal vorticities are known, the vorticity at the edge-

centers may be computed as the average of the vorticity at the corresponding nodes. Also the tangential

derivative of the vorticity at the edge-center may be computed as the difference of the nodal vorticities

divided by the edge length. These approximations are second-order accurate in the edge length.
Analogous to the staggered-grid approach on structured grids, the tangential velocities on edge-centers

are obtained by interpolating from the normal velocities on the surrounding edges. This process is fairly
Fig. 2. Illustration of the dual mesh used to compute the vorticity at the nodes.
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simple on structured grids where the coordinate directions are generally orthogonal in physical or com-

putational space. However obtaining the tangential velocities on unstructured grids requires solving a

system of equations. The interpolation is performed as follows. Referring to Fig. 3, the velocity tangential
to each edge vt is unknown, while the normal velocity is known. Project the velocity vectors on the four

neighboring edges along the direction of the central edge. The tangential velocity at the central edge is then

expressed as the weighted average of the projected velocities at the neighboring four edges. This yields the

elements of the coefficient matrix A½vt� ¼ ½b� where the projected edge-normal velocities make up the right-

hand side vector b. In the current implementation, we use a first-order approximation on a non-uniform

grid, second-order on an uniform grid; i.e., the tangential velocity at the central edge is the average of the

projected velocity vector at the neighboring four edges.

A fractional step approach for the pressure is derived. A direct analogy with the structured grid algo-
rithm may be drawn. The algorithm ensures that as the solution is advanced from time tk to tkþ1, the di-

vergence of the velocity field at tkþ1 is machine zero (or proportional to the level to which the pressure

equation is converged). Denote the nonlinear terms in Eq. (3) by NL and the viscous terms by VISC, and

use the Adams–Bashforth method for time integration for both. Neglecting the pressure in the first frac-

tional step, we have

bvn � vkn
Dt

¼ 1
2
3ðNL
h

þ VISCÞk � ðNLþ VISCÞk�1
i
; ð9aÞ
vkþ1
n � bvn
Dt

¼ � opkþ1

on
: ð9bÞ

We require that the divergence of the velocity field at tkþ1 be zero. Application of the divergence theorem to
each element yields

Vr �~u ¼
X
e

vnele; ð10Þ

where V is the element volume (area of the triangle in 2D), vne is the normal velocity component associated

with an edge and le is the length of the edge of the 2D element. Eq. (9b) holds for each edge. Consider the

three edges that bound a volume. For each edge of the volume, multiply Eq. (9b) by the edge-length, and

add the product for all three edges. This yields
Fig. 3. (a) Illustration of the interpolation stencil for the tangential velocity at the edges. (b) Schematic of a boundary volume. The

solid vectors are the normal and tangential velocities on the edges, while the dashed line denotes projection of the velocity vector along

the edge under consideration.
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Using Eq. (10) for the divergence and the continuity equation written at time tkþ1, we require thatP
e v

kþ1
ne le ¼ 0. This requires that the pressure satisfy

X
e

opkþ1

on
le ¼

1

Dt

X
e

bvnele: ð12Þ

Since p is stored at the circumcenter of the volume, its gradient normal to the edge is easily computed. This

yields a set of discrete equations for p that are then solved. These discrete equations are of the form,

cðiÞpðiÞ þ
X3
j¼1

cði; jÞpðjÞ ¼ rhsðiÞ; ð13Þ

where the sum over j is a sum over the three (triangles) volumes that are neighbors of volume �i�. Eq. (13) is
easily written for the interior volumes. When it is applied to a boundary volume, it appears that the gra-

dient of p at the boundary is required. However this is not the case (see e.g. [26]); this requirement can be

circumvented as follows. Fig. 3 shows a boundary element. Assume that Dirichlet boundary conditions on

the velocity are specified at the boundary. The divergence-free condition requires thatX
e

vnele ¼ 0; i:e:;
X

interior edges

vnele ¼ �vnbleb; ð14Þ

where the subscript b refers to the boundary edges. This implies that the pressure equation for the boundary

elements may be obtained by summing Eq. (12) over the interior edges alone, and using Eq. (14) to relate

the interior sum of the velocity to the normal velocity at the boundary; i.e.,

X
interior edges

opkþ1

on
le ¼

1

Dt

X
interior edges

bvele þ 1

Dt
vnbleb: ð15Þ

This eliminates the need for boundary conditions on p.

2.1. Validation

2.1.1. Laminar flow in a driven cavity

Results are presented for the steady laminar flow in a two-dimensional driven cavity at a Reynolds
number of 5000 (Fig. 4). Results from the structured grid computations by Ghia et al. [6] are used for

validation. The quantities validated include velocity and vorticity profiles (Fig. 5). The unstructured grid

allows fewer points to be used. Table 1 lists some details of the grids used. Corresponding details of Ghia

et al.�s computations are also shown. No attempt was made to optimize the unstructured grids; good

agreement with the structured grid results is seen (Fig. 5) .

2.1.2. Unsteady evaluation

The Taylor problem has the following analytical solution to the Navier–Stokes equations (on a domain
of unit size in both directions):

u ¼ � cos 2px sin 2py e�8p2t; v ¼ sin 2px cos 2py e�8p2t ð16Þ



Fig. 4. Grid and contours of the streamfunction in driven cavity simulations at Re ¼ 5000.
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Fig. 5. Unstructured results (solid lines) are compared to results from Ghia et al. (symbols) for the flow in a driven cavity. The

Reynolds number is 5000. (a) Vertical profile of streamwise velocity at x ¼ 0:5. (b) Streamwise profile of vertical velocity at y ¼ 0:5 (c)

vorticity at the top boundary.
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Table 1

Comparison of the grid used in the unstructured computations to the structured grid used by [6] in driven cavity simulations

Unstructured Structured

Nodes 10576 66049

Elements 30925 65536

Dmin 0.005 0.004

Dmax 0.1 0.004

Dmin and Dmax denote the minimum and maximum edge-lengths, respectively.
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and is used for unsteady flow validation. Note that the Taylor problem corresponds to periodic, counter-

rotating vortices whose strength decays in time at a rate determined by the viscosity. Fig. 6 shows the decay

in kinetic energy as a function of time. The mesh has an edge-length of 0.05, and the CFL number is 1. The

computation was run long enough that the kinetic energy decayed by a factor of 50. Note that the error at

the end of the first time-step is sightly larger (�1%) than that at the subsequent substeps. The explicit Euler
scheme is used at the first timestep, while subsequent substeps use the second-order Adams–Bashforth

method. The lower accuracy of the explicit Euler was thought responsible for this behavior. However, time-

step refinement at the first substep showed no change in the error. This raised some concern if the time-

advancement at the first substep was zeroth-order, and if the fractional step approach for pressure was

responsible. The fractional step approach was therefore replaced by the straightforward explicit Euler at the

first timestep. Pressure was obtained by solving the Poisson equation obtained from the divergence of the

nonlinear and viscous terms. The error still persisted. It turns out that source of the error is the the in-

terpolation of vn to obtain vt. The first time-step is different from subsequent timesteps in that vn is obtained
from the analytical solution, and vt is immediately obtained by interpolation. Subsequent time-steps con-

sistently obtain both components from the projection step and interpolation, respectively. This was verified

by replacing the interpolated value for vt by the exact value; the error was eliminated. Structured staggered-

schemes will have similar error.

A grid convergence study was performed to verify that the overall spatial discretization is second-order.

The edge-lengths were progressively refined from 0.1 to 0.0125 in factors of 2. A fixed CFL number of 1 was

used to run the flow out to a dimensional time of 0.025. This corresponds to a non-dimensional time (8p2t)
of 2. The kinetic energy decays by a factor of approximately 50 over this time. The fractional error,
q2
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Fig. 6. (a) The decay of kinetic energy from the unstructured algorithm (solid line) is compared to the analytical solution (symbols) for

the Taylor problem. The edge-length is 0.05 and the CFL number is 1. (b) The percentage error in kinetic energy as a function of

resolution. The solid line corresponds to a second-order accurate scheme while the symbols are from the computation.
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100ðq2computed=q
2
exact � 1Þ at the end of the run is shown in Fig. 6. The error in kinetic energy is seen to drop

by a factor of 4 every time the mesh is refined, confirming that the spatial discretization is indeed second-

order.

2.2. Extension to three-dimensions

The algorithm is extended to tetrahedral elements as follows. Fig. 7 shows a tetrahedral element. Each

element is comprised of four nodes, four faces and five edges. The pressure and any scalars are stored at the

circumcenter of the tetrahedron. The velocity component normal to each face, vn is stored at the circum-

center of each face. The correspondence to the classical staggered positioning of variables on structured

grids is apparent. The usual structured grid algorithm may be interpreted in an unstructured manner as
follows. On each face one solves for the face-normal velocity. Tangential velocity components, when needed

on the face are obtained by interpolating the velocities from the surrounding faces. Defining pressure at the

cell-centers, allows pressure gradients at the faces to be computed in a natural manner

op
on

� �
face

¼ ðpcv2 � pcv1Þ
df

; ð17Þ

where cv1 and cv2 are the two cells having that particular face in common, df is the distance between the

circumcenters of cv1 and cv2 and n is the face-normal pointing from cv1 to cv2. Also, solving for the face-

normal velocities allows the discrete divergence at the cell-centers to be computed using the divergence

theorem, which in turn allows the pressure in a pressure-projection approach to be consistent with the

discrete continuity equation. This interpretation forms the basis of the unstructured algorithm. The only

caveat is that the convection term has to be computed in velocity–vorticity (rotational) form.
Consider the term ð~u� ~xÞ �~n in Eq. (3). Decompose the velocity and vorticity into components parallel

and perpendicular to ~n; i.e.,

~u ¼ vn �~nþ~vt; ~x ¼ xn �~nþ ~xt: ð18Þ

Since ~n is normal to a face, the tangential components lie in the plane of the face. The vector identities,

~a � ~b
�

�~c
�
¼~b � ~c

�
�~a
�
¼~c � ~a

�
�~b
�

ð19Þ
Fig. 7. The staggered positioning of variables on an unstructured mesh of tetrahedra.
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may be used to show that only the components of velocity and vorticity that lie in the plane of the face

contribute to ð~u� ~xÞ �~n; i.e.,

~u
�

� ~x
�
�~n ¼~vt � ~xt

�
�~n
�
: ð20Þ

The tangential velocity components are obtained as follows. Each face has three edges. On each face ar-
bitrarily define two basis vectors that are aligned with edges 1 and 2. These two basis vectors define the two

tangential directions on the face. Denote the velocity components along these directions as vt1 and vt2
(~vt ¼ vt1 �~t1 þ vt2 �~t2). Analogous to the two-dimensional algorithm, a set of equations is derived for the

tangential velocity components by interpolating the velocities from the neighboring faces.

There are two steps to obtaining the vorticity components in the plane of each face. First, the circulation

theorem is invoked to obtain the vorticity along each edge of the face. The circulation theorem is applied on

a closed circuit around each edge. This circuit is obtained by joining the circumcenters of the tetrahedra of

which this edge is part. This is made possible by the property of the circumcenter that all such segments will
lie in the same plane. This is schematically shown in Fig. 8. Consider an edge along which we want the

vorticity (the thick dashed line). Also shown are the faces that this edge is attached to. The circuit obtained

by joining the circumcenters of the tetrahedra that straddle the faces is the thin dashed line. The circulation

theorem,

Adualxe ¼
X

dual edges

vneld ð21Þ

is applied to this circuit to obtain the vorticity component along the edge. Note that the length of the edges

of the dual mesh (ld) is the distance between the circumcenters of the tetrahedra that constitute the dual

mesh.

This process is easily performed in a face-based data structure. This vorticity is then projected along the
tangential basis vectors on the face, and averaged to obtain ~xt at the face circumcenter.

The viscous term is obtained from the edge-vorticities as follows. Consider the identity (5). If the velocity

field is divergence-free, this implies that in 3D (analogous to Eq. (6) in 2D)

r2~u
� �

�~n ¼ � ~r
�

� ~x
�
�~n: ð22Þ
Fig. 8. Illustration of how the vorticity along each edge is computed.
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Green�s theorem shows that the curl of a vector along any direction may be related to the circulation of the

vector on a circuit in a plane normal to that direction. This implies that the curl of the vorticity along the

face-normal may be expressed in terms of its circulation along the face-edges; i.e.,

Af
~r
�

� ~x
�
�~n ¼

X
e

xele; ð23Þ

where xe is the vorticity component along the edges previously computed (see Eq. (21)), le denotes the edge-
lengths of the face, and Af denotes the area of the face.

2.3. Problems with formulation

While elegant, the above formulation has some limitations. It is restrictive in that pressure (and scalars if

any) is stored at the circumcenter of the triangular elements. This restricts the grid to elements whose

circumcenter lies within them. For example, in two-dimensions, consider right-triangles. Their circumcenter

lies on the hypotenuse, making it impossible to determine the pressure gradient normal to the hypotenuse.

Highly skewed elements are another source of problem since the circumcenter will now lie outside the

element [17]. Although projection of the velocity field is still possible in this situation, the inaccurate
computation of the pressure gradient is cause for concern. Skewed elements also render computation of the

vorticity inaccurate.

A practical limitation concerns the restriction of the algorithm to tetrahedra. Although tetrahedra are

well-suited to grid very complex geometries, experience shows that hexahedral elements are preferable since

(i) hexahedral elements are more easily aligned with flow gradients such as boundary layers, and (ii) it takes

fewer hexahedral elements to fill space than comparable tetrahedra. For example, a three-dimensional grid

generated for an industrial (Section 3.3) gas-turbine combustor required a tetrahedral grid with approxi-

mately 600,000 nodes and 6.35 million faces (normal velocities to be solved) while a hexahedral grid with
only 1.5 million nodes and faces yielded significantly higher resolution near the walls.
3. A non-staggered formulation

To address the problems of the staggered rotational formulation described above, an alternative ap-

proach was developed, and implemented for hybrid grids of tetrahedra, hexahedra, wedges and prisms. The

basic idea is that the robustness at high Reynolds numbers is determined essentially by the numerical
discretization of the convection term, while robustness on skewed grids is determined by both discretization

of the convection and the pressure-gradient terms. For incompressible flows, discrete energy conservation

refers to the fact that the convective and pressure terms in the discrete kinetic energy equation are ex-

pressible in divergence form. In contrast with the fully staggered approach outlined earlier, the Cartesian

velocity components and pressure are stored at the centroids of the cells, while the face-normal velocities

are treated as an independent variable which is stored at the centroids of the faces. Spatial discretization of

the convective term is illustrated by the passive scalar equation,

o/
ot

þ o

oxi
/ui ¼ 0: ð24Þ

Note that oui=oxi ¼ 0 for incompressible flow. Multiplying by / and using the continuity equation yields

o/2

ot
þ o

ox
/2ui ¼ 0; ð25Þ
i
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i.e., conservation of / implies conservation of /2. However, discretely, conserving / does not automatically

imply conservation of /2. Integrating Eq. (24) over a cell and using the divergence theorem yields

Vcv
d/cv

dt
þ

X
faces of cv

/facevnAf ¼ 0; ð26Þ

where /cv and Vcv denote the value of the scalar and the volume of cell �cv�, Af is the face area, and vn
denotes the face-normal velocity in the direction of the outward normal at each face. Note that the in-

compressibility condition requires that
P

faces vnAf ¼ 0. Also, / is discretely conserved regardless of how

/face is computed. However, /2 will discretely be conserved only if the values of / at the faces are calculated

as a simple arithmetic mean of the values at the two cells that have that particular face in common; i.e.,

/face ¼
/cv þ /nbr

2
: ð27Þ

The discrete equation for /2 is obtained by multiplying Eq. (26) with /cv to obtain

Vcv/cv

d/cv

dt
þ /cv

2

X
faces of cv

ð/cv þ /nbrÞvnAf ¼ 0; ð28Þ

which may be rewritten as

Vcv
2

d/2
cv

dt
þ /2

cv

2

X
faces of cv

vnAf|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ 1

2

X
faces of cv

/cv/nbrvnAf ¼ 0: ð29Þ

Summation over all the cells in the computational domain yieldsX
volumes

Vcv
d/2

cv

dt
þ
X

volumes

X
faces of cv

/cv/nbrvnAf ¼ 0: ð30Þ

The contribution from the interior faces cancel out in the second term to yield

X
volumes

Vcv
d/2

cv

dt
þ

X
boundary faces

/cv/nbrvnAf ¼ 0; ð31Þ

where if the boundary conditions for the scalar / are specified on the boundary faces, one can define /nbr as

/nbr ¼ 2/face � /cv. The above property is a statement of robustness since the summation of positive

quantities is bounded.

Note that discrete energy-conservation is implied in the absence of time-discretization errors. Also, the

discretization will have dispersive error to leading order, whose magnitude needs to be small to compute

phenomena such as turbulent mixing of passive scalars. In our experience, in computations of turbulent
flow fields, dissipative errors show up at the level of kinetic energy, while dispersive errors show up in higher

order statistics. This motivates the choice of schemes that are non-dissipative, yet robust at high Reynolds

numbers.

The interpolation, /face ¼ ð/cv þ /nbrÞ=2 is second-order accurate on uniform grids. On non-uniform

grids, the interpolant could be weighted by the distances between the faces and the neighboring volumes.

However such weighted interpolation comes at the cost of not being discretely energy-conserving. Nu-

merical examples show that on grids that vary rapidly, weighted interpolants can be unstable since the

weights reflect the underlying grid roughness. The symmetric interpolation on the other hand is both en-



K. Mahesh et al. / Journal of Computational Physics 197 (2004) 215–240 227
ergy-conserving and stable for arbitrarily non-uniform meshes, properties which are of prime importance

for obtaining meaningful solutions in very complex geometries, where mesh irregularities cannot always be

avoided.
The term /2

cv

P
faces of cv vnAf was dropped in Eq. (29) since

P
faces of cv vnAf is zero for incompressible flow.

The Poisson equation for pressure enforces this incompressibility constraint. If the Poisson equation

is solved using direct methods, then the discrete divergence will be zero to machine accuracy. However, it is

more common to solve the Poisson equation iteratively; the discrete divergence in each computational cell is

therefore determined by the tolerance to which the Poisson equation is converged. This has implications for

discrete energy conservation. Summation of Eq. (29) over all volumes yieldsX
volumes

Vcv
d/2

cv

dt
þ

X
boundary faces

/cv/nbrvnAf ¼ �
X

volumes

/2
cv

X
faces of cv

vnAf : ð32Þ

Note that even if the discrete divergence in each cell may be small, the collective contribution when
summed over all volumes can be significant. For example, if

P
faces of cv vnAf ¼ Oð10�6Þ in each cell, sum-

mation over a million volumes can make the right-hand side of Eq. (32) approach Oð1Þ. This cumulative

effect can be avoided if
P

faces of cv vnAf is assumed to be 0 when advancing /cv; i.e.,

Vcv
d/cv

dt
þ

X
faces of cv

/nbr

2
vnAf ¼ 0 ð33Þ

is used to advance /cv instead of Eqs. (26) and (27).

This observation is extended to the Navier–Stokes equations by computing the convection term in a

similar manner. In particular, for / ¼ ui this result indicates that the only net convection of kinetic energy

fluxes occurs through the boundary, or in other words there is no production of kinetic energy in the
computational domain due to the numerics in the absence of time-discretization errors.

A predictor–corrector formulation is derived that emphasizes energy conservation for the convection

and pressure terms on arbitrary grids. Accordingly, the cell velocities ui and the face-normal velocities vn
defined at the center of the face are treated as essentially independent variables. This storage of variables is

similar to that used by Rhie and Chow [32] but as will be seen below, the details of the discretization are

quite different. Specifically, it will be seen that we do not add a contribution proportional to the difference

between the pressure gradient at the center of the cells and the pressure gradient at the center of the faces as

advocated by Rhie and Chow [32].
A predictor–corrector formulation is used along with explicit time-advancement.

bui � uki
Dt

¼ 1
2
½3ðNLþ VISCÞk � ðNLþ VISCÞk�1�; ð34Þ

where NL and VISC denote the nonlinear and viscous terms, respectively. The predicted values of ui are
used to obtain predicted values for the face-normal velocities,

bv ¼ buicv1
i þ buicv2

i

2

� �
ni; ð35Þ

where the face-normal, ~n and therefore bv point from the volume, icv1 to icv2. The predicted face-normal

velocities are projected using

vn � bv
Dt

¼ � op
on

: ð36Þ

The divergence-free constraint requires that
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X
faces of cv

vNAf ¼ 0 ) Dt
X

faces of cv

op
oN

Af ¼
X

faces of cv

bvAf : ð37Þ

The subscript ‘‘N’’ is used to denote the direction along the face-normal in the outward direction for the

control volume under consideration. The above Poisson equation (in integral form) is solved iteratively.

Once p is obtained, the Cartesian velocities are updated as

ukþ1
i � bui

Dt
¼ � op

oxi
: ð38Þ

It turns out that the details of how op=oxi are computed affect the robustness of the solution on highly

skewed grids. An obvious approach to computing the gradient at cell centers is to use the gradient theorem:

op
oxi

¼ 1

V

X
faces

pfaceAfNi: ð39Þ

When applied to flows such as homogeneous turbulence (Section 3.2.2) or the coaxial combustor (Section

3.2.4) for which the grids are fairly regular, very accurate results are obtained. However when applied on

the highly skewed grids encountered in a gas-turbine combustor geometry (Section 3.3), unstable solutions
were obtained. This behavior was found at both high and low Reynolds numbers, pointing to the pressure

gradient as the source of the problem. This lack of robustness can be understood from the contribution of

the pressure gradient to the discrete kinetic energy equation. It can be shown that the pressure-gradient

term in a fully staggered approach is discretely energy conserving; however, that is not the case in the

algorithm described above.

Consider the contribution of the pressure-gradient term to the kinetic energy in a fully staggered for-

mulation. The pressure-gradient term appears as

ovn
ot

¼ � op
on

þ � � � ð40Þ

Since vn points from volume icv1 to icv2,

ovn
ot

¼ � picv2 � picv1
df

; ð41Þ

where df denotes the normal distance between the centroids of the two volumes on either side of the face.

This implies that

vn
ovn
ot

Afdf ¼ �vn picv2ð � picv1ÞAf : ð42Þ

Summation over all faces in the domain yields,X
faces

o

ot
v2n
2
Afdf

� �
¼ �

X
faces

vn picv2ð � picv1ÞAf ð43Þ

which is equal to

�
X

interior faces

vn picv2ð � picv1ÞAf �
X

boundary faces

vn picv2ð � picv1ÞAf : ð44Þ

Adopting the convention that n points out of the domain at the boundary faces, it is readily seen that the

above summation reduces to



K. Mahesh et al. / Journal of Computational Physics 197 (2004) 215–240 229
X
faces

o

ot
v2n
2
Afdf

� �
¼
X

volumes

picv
X

faces of cv

vNAf|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�
X

boundary faces

vnpfAf ; ð45Þ

i.e., the contribution of the pressure-gradient to discrete kinetic energy is conservative in a fully staggered

formulation. The same is not true in a non-staggered formulation where ui is computed as

ui � bui

Dt
¼ � 1

Vcv

X
faces of cv

picv þ pnbrð Þ
2

NiAf : ð46Þ

This can be seen as follows. Eq. (46) implies that the pressure gradient contributes to the energy equation as

X
volumes

ui
op
oxi

Vcv ¼
X

volumes

X
faces of cv

picv þ pnbrð Þ
2

uiNiAf ; ð47Þ

which is equal toX
volumes

X
faces of cv

picvð þ pnbrÞvNAf ; ð48Þ

which may be expressed asX
volumes

picv
X

faces of cv

vNAf|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ
X

volumes

X
faces of cv

pnbrvNAf ; ð49Þ

which is not expressible solely in terms of contributions from the boundary faces. The pressure-gradient

term is therefore not conservative, in terms of its contribution to the kinetic energy. The main reason for
this is that the projected face-normal velocities

vn 6¼
uicv1i þ uicv2i

2

� �
ni: ð50Þ

The following procedure was therefore derived for the pressure-gradient in advancing the Cartesian ve-

locities at the centers of the volumes. Eq. (46) implies that

uicv1i

�
þ uicv2i

�
ni � buicv1

i

�
þ buicv2

i

�
ni ¼ �Dt

opicv1

oxi

�
þ opicv2

oxi

�
ni: ð51Þ

Summing over the faces of each control volume and invoking the projection step (Eq. (36)) yieldsX
faces of cv

Ni
uicvi þ unbri

2

� �
Af � Dt

X
faces of cv

op
oN

Af ¼ �Dt
2

X
faces of cv

opicv

oxi

�
þ opnbr

oxi

�
NiAf : ð52Þ

We would likeX
faces of cv

Ni
uicvi þ unbri

2

� �
Af ð53Þ

to be as small as possible. This is possible if 1
2
ðopicv
oxi

þ opnbr

oxi
ÞNi across each face is as close to op=on as possible.

Since op=oxi is located at the volumes, while op=on is located at the faces, this relation cannot be imposed
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exactly. Our approach to make the pressure-gradient term be as energy-conserving as possible is to satisfy

this relation in a least-squares sense; i.e., by minimizingX
faces of cv

op
oxi

jicv nfacei

�
� op
on

jface
�
Af : ð54Þ

This minimization allows op=oxi to be computed in terms of the nearest neighbors, and is a local operation.

The subsequent sections show validation examples of the above formulation. Note that discretizing the

convective terms as described above were imperative to obtain robust accurate solutions at high Reynolds
numbers. Also one of the simulation examples shown is the exceedingly complicated flow in a gas-turbine

combustor. The geometrical complexity made it impossible to avoid the presence of skewed elements. The

above least-squares formulation was found imperative to obtain robust, accurate solutions; unstable so-

lutions were obtained in its absence.

3.1. The subgrid model

The dynamic Smagorinsky model [5,21] was extended to unstructured grids, and used for all LES cal-
culations reported in this paper. Note that the Smagorinsky model assumes that

qij ¼ �2CD
2jSjSij; ð55Þ

where qij denotes the anisotropic part of the subgrid-scale stress (uiuj � uiuj), D denotes the grid-filter width,

and Sij denotes the filtered strain-rate tensor. Application of the dynamic procedure using the least - squares

approach [15] yields the following expression for C:

CD
2 ¼ � 1

2

LijMij

MklMkl
; ð56Þ

where

Lij ¼ duiuj � bui buj ; ð57Þ

and

Mij ¼ bD=D� �2
j
d
SjcSij � djSjSij : ð58Þ

The dynamic procedure requires definition of a test-filter (denoted by b), and the ratio of test to grid filter

widths (bD=D). The ratio of filter widths is assumed to be 2, as is common. The filter width is defined as as

V 1=3 where V denotes the element volume. This yields a filter width of ðDxDyDzÞ1=3 for a Cartesian grid. The

test filter is assumed to be a top – hat filter which uses information from the neighboring volumes.
3.2. Validation

3.2.1. Taylor problem

The importance of discrete energy conservation is illustrated in Fig. 9, which shows the evolution of

kinetic energy in the Taylor problem Eq. (16). Our non-staggered formulation (Section 3) is compared to

another non-dissipative formulation that only conserves momentum (central differences are applied to the

divergence form of the convective term). Both formulations have the same computational stencil, are

applied on the same uniform computational grid, and are time–advanced using the same time–step

(0:0002k=umax where k and umax denote the wavelength, and maximum initial velocity of a single vortex



Fig. 9. Illustration of the importance of discretely conserving kinetic energy. The kinetic energy is plotted against time for the Taylor

problem at: (a) Re ¼ 109, and (b) Re ¼ 1. At the lower Reynolds number, both schemes are stable. At higher Reynolds number, only

the energy-conserving scheme is stable. The solid circles in (b) denote the analytical solution; the energy-conserving formulation passes

through them.
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pair). No subgrid model is used in these computations. At low Reynolds numbers, where the dissipative

scales are resolved, both formulations are stable, although the energy conserving formulation shows better
agreement with the analytical result. However, at very high Reynolds numbers where the dissipative scales

are not resolved, the formulation that does not conserve kinetic energy becomes unstable after some time,

while the energy conserving formulation is seen to maintain its initial kinetic energy as required by the

analytical solution. These results may be interpreted more generally. If the computational grid is fine en-

ough that viscous dissipation (the peak of the dissipation spectrum) is resolved on the grid, then discrete

energy conservation is not essential; higher order of accuracy might be preferable. On the other hand, if the

grid is not fine enough to resolve viscous dissipation, then discrete energy-conservation is essential to obtain

stable, accurate solutions. By definition, LES does not resolve viscous dissipation on the computational
grid, hence the importance of discrete energy conservation. It can be argued that the subgrid model pro-

vides dissipation which can stabilize the LES solution. In our experience, this does not usually happen at

high Reynolds numbers in complex geometries. The primary reason for this is that the subgrid model will

stabilize the solution only if it removes energy at the same or greater rate than that at which the energy

cascades down to the smallest resolved scales. There is no assurance of this happening in general.

3.2.2. Decay of isotropic turbulence

The subgrid term in the LES equations models the transfer of kinetic energy between the resolved scales
and the unresolved scales. Non-dissipative numerics make two things possible – the solution exhibits the

proper Reynolds number sensitivity, and since the computations are stable without being dissipative, the

subgrid model can be turned off, and its contribution to the LES solution assessed.

Fig. 10 illustrates this behavior. The decay of turbulent kinetic energy of isotropic turbulence when

computed on a very coarse uniform grid (163) is shown . The Reynolds number is increased from 100 to 109

while keeping the grid fixed. Computations without a subgrid model are contrasted to those with a subgrid

model. Even the lowest Reynolds number computation is not completely resolved at this resolution. Note

that in the absence of the subgrid model, the solution does not become numerically unstable; instead it
exhibits the proper Reynolds number sensitivity (reduced decay rate with increasing Reynolds number).



Fig. 10. Resolved kinetic energy of isotropic turbulence is plotted against time at various Reynolds numbers. (a) without subgrid

model. (b) with subgrid model.
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The decay rate is seen to increase in the presence of the subgrid model, and for Re > 104, the rate of decay

becomes nearly independent of Reynolds number. This trend is physically correct, since increasing the

Reynolds number while keeping the grid fixed moves viscous dissipation to smaller and smaller scales.

Beyond a certain Reynolds number most of the viscous dissipation occurs outside the range of scales re-

solved by the grid. At this point, the energetics of the resolved scales are determined only by the transfer of

energy to the unresolved scales; i.e., the eddy viscosity of the subgrid model far exceeds physical viscosity,

and no further dependence of Reynolds number is observed. Note that in contrast, if the underlying nu-

merical scheme were dissipative then the kinetic energy would decay at a rate determined by the numerical
scheme and not the subgrid model.

3.2.3. Flow over a circular cylinder

The flow over a circular cylinder is chosen as a validation example for external flow. Cylinder flow varies

significantly with Reynolds number, and is therefore a challenging candidate for validation. Also, exper-

imental data and results from past computations on structured grids are available. DNS was performed at

cylinder Reynolds numbers of 20, 100 and 300, and LES was performed at a Reynolds number of 3900.

Note that the solution is two-dimensional and steady at Re ¼ 20, two-dimensional and unsteady at
Re ¼ 100, three-dimensional and unsteady at Re ¼ 300, and turbulent at Re ¼ 3900.

Only the Re ¼ 300 DNS and Re ¼ 3900 LES are shown here in the interest of brevity. Results for the

lower Reynolds numbers are described by [18] where they are shown to agree very well with past experi-

ments and computations. Relevant details of the grids used for the higher Reynolds numbers follow. An

unstructured grid of quadrilaterals was first generated in a plane, such that nodes were clustered in the

boundary layer and the wake. This two-dimensional grid was then extruded in the spanwise direction to

generate the three-dimensional grid; 32 planes were used for the Re ¼ 300 and 3900 simulations and pe-

riodic boundary conditions imposed in those directions. Uniform flow was specified at the inflow, and
convective boundary conditions were enforced at the outflow.

The Re ¼ 300 computations were performed on a domain whose inflow and outflow planes were 22D
from the center of the cylinder (D denotes the cylinder diameter). The domain height was 40D and spanwise

extent pD. The grid had a total of 1.2 million hexahedral control volumes. The smallest elements imme-

diately adjacent to the cylinder, were of size 2:2e�3D radially and 0:01D in the azimuthal direction. The

wake was resolved using elements of size varying from 0:2D� 0:07D to 2D� 2D in the far-field. The do-

main for the Re ¼ 3900 computations extended 30D upstream and 35D downstream of the center of the
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cylinder. The domain height was 50D and spanwise extent was pD. The smallest elements in the boundary

layer were 2:5e�3D radially and 0:012D in the azimuthal direction. Note that this resolution is approxi-

mately the same as that used in the Re ¼ 300 DNS. The elements are approximately 0:04D� 0:04D for a
distance of 1:5D in the wake, outside of which they increase from 0:7D� 0:1D in the near-field to

0:8D� 1:1D in the far-field. Fig. 11 shows the grids used for both computations. Statistics were computed

by averaging over time and the spanwise direction. The Re ¼ 300 simulations used a time-step of

0:016D=Ufreestream for a total time of 240D=Ufreestream. 90 time units were used to allow initial transients to exit

the domain, and statistics were collected over the remaining 150 time units. The Re ¼ 3900 simulations used

a time-step of 0:001D=Ufreestream for a total time of 230D=Ufreestream. 80 time units were used to allow initial

transients to exit the domain, and statistics were collected over the remaining 150 time units.

The Re ¼ 300 results are compared in Fig. 12 to B-spline-Fourier computations by [13], and the spectral
computations of [23] and good agreement is observed. Figs. 13 and 14, and Table 2 show results from the

Re ¼ 3900 LES. Global variables such as recirculation length, Strouhal number, separation point, and

profiles of the mean velocities and turbulent Reynolds stresses are seen to be in good agreement with ex-

periments [16,30] and past computations [12,24].

3.2.4. Flow in a coaxial combustor

The flow in a coaxial combustor is chosen as a sample internal flow, due to the presence of multiple

streams, swirl and separation. Results are shown for incompressible turbulent flow in a coaxial combustor
configuration at conditions corresponding to experiments by [33]. Note that the algorithm described in this

paper has been extended to variable density, reacting flow and reacting simulations performed in the same

geometry [20]. The domain consists of a central core (primary) and annular (secondary) jets discharging

into a cylindrical test section with sudden expansion. The primary jet has a radius of 16 mm and the

secondary annular jet extends over the radial interval of 19–32 mm. The outer radius of the annulus is 32

mm, the test-section is 960 mm long, and flow in the annular section has mean swirl. The Reynolds number

of the primary jet is 26,200 and the swirl number (ratio of mean azimuthal to axial momentum) in the

annulus is 0.47. The ratio of flow rates of the annular jet to the primary jet is 3.87.
The computational domain is divided into �1.6� 106 hexahedral volumes, with �0.9� 106 elements

clustered in the first half of the test section. The smallest grid spacing is �32 lm near the walls and in the

shear layers close to the annular inlet into the test section. Unsteady velocities corresponding to turbulent
Fig. 11. Cross-section of the grids used in the circular cylinder simulations. (a) Re ¼ 300. (b) Re ¼ 3900.



Fig. 12. Vertical profiles at streamwise stations behind the cylinder at Re ¼ 300. The unstructured solutions (——) are compared to the

B-spline Fourier simulations of Kravchenko et al. [13] (s) and spectral simulations of Mittal and Balachandar [23] (�). The overbars

denote averages over time and the span, and primes denote fluctuations about the average.

Fig. 13. Vertical profiles of mean velocity at streamwise stations behind a cylinder at Re ¼ 3900. The unstructured solutions (——) are

compared to Mittal and Moin [24] (�), Kravchenko and Moin [12] (j), Lourenco and Shih [16] (�) and Ong and Wallace [30] (s).
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pipe flow, and turbulent annular swirling flow, from a separate computation were specified at the inflow.

Convective boundary conditions were imposed at the outflow. The simulations used a time–step of

0:01Dprimary jet=Uprimary jet for a total of 180 time units. Sixty time units were used to allow initial transients to

exit the domain, and statistics were collected over the remaining 120 time units. Fig. 15 shows computed

contours of streamwise velocity. The divergence of the annular flow, establishment of central recirculation

region, and the range of scales of motion are apparent. Profiles at six stations of mean streamwise, radial



Fig. 14. Vertical profiles of turbulence intensities at streamwise stations behind the cylinder at Re ¼ 3900. The unstructured solutions

(——) are compared to Mittal and Moin [24] (�), Kravchenko and Moin [12] (j), Lourenco and Shih [16] (�) and Ong and Wallace

[30] (s).

Table 2

Comparison of results from LES of the flow around a circular cylinder at Re ¼ 3900 to past experiments and computations

Grid (106 cvs) Cd St Umin hsep: (�) Lrec=D

Lourenco and Shih (expt.) [16] 0.99 0.215 )0.24 86.0 1.40

Mittal and Moin (LES) [24] 2.3 1.00 0.207 )0.35 86.9 1.40

Kravchenko and Moin (LES) [12] 1.3 1.04 0.210 )0.37 88.0 1.35

Present 1.5 1.00 0.218 )0.31 87.6 1.35

Cd, St, Umin, hsep:, and Lrec denote the drag coefficient, Strouhal number, minimum mean streamwise velocity in the recirculation

region, separation angle, and length of the recirculation region, respectively.
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and azimuthal velocities and turbulence kinetic energy are compared to experiment in Fig. 16, and good

agreement is observed.

3.3. Pratt and Whitney gas turbine combustor

Incompressible simulations were performed in the exceedingly complex geometry of a combustor cor-

responding to a Pratt and Whitney gas-turbine engine. Note that the algorithm described in this paper has
been extended to variable density, reacting flow and preliminary reacting simulations performed in the same

geometry [7,19]. Fig. 17 shows the level of geometrical complexity; the combustor has numerous passages,

holes of various sizes and shapes, swirlers, and obstacles in the flow path. The combustor chamber is fed by

three coaxial swirlers and several dilution holes. The inlet air passes through the pre-diffuser and follows



Fig. 15. Contours of axial velocity in LES of incompressible swirling flow in a coaxial combustor geometry. Only part of the com-

putational domain is shown for clarity. (a) z ¼ 0 plane, (b) x ¼ 1:63D plane.

Fig. 16. Profiles of mean velocity and turbulent kinetic energy in LES of incompressible swirling flow in a coaxial combustor geometry.

The lines are results from the LES, and symbols are experimental data from [33].
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two paths; the main stream flows through the swirlers and enters the chamber, while the secondary stream is

diverted to the outer diffusers, and enters the combustor through the dilution holes. The computational

domain was divided in �100 volumes for grid-generation; hexahedral meshes were generated over �85% of

the volumes. Tetrahedral meshes were generated for the swirlers, and pyramids were used to connect tet-

rahedral and hexahedral elements.

Results are shown for a grid of �1.3 million elements (0.6 million tetrahedra, 0:65 million hexahedra).

Note that the grid consists of highly skewed elements with rapid variations in element size and type.
Proprietary experimental data for mass-flow splits and mean pressure-drops was used for validation. Even

on this fairly coarse grid, the pressure drops and mass flow through different components were predicted to

within 5%. The Reynolds number in the pre-diffuser based on the bulk velocity and cross-section was

500,000; that in the main (core) swirler channel was 150,000. Turbulent fluctuations from a separate cal-

culation in a pipe sector of identical shape as the pre-diffuser inlet section were specified at the inlet. The

simulations used a time-step of 0:0067Dinflow=Uinflow for a total of 150 time units. Note that Dinflow denotes



Fig. 17. Illustration of the geometry and surface mesh in the Pratt and Whitney combustor.
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the height of the pre-diffuser at the inflow. 70 time units were used to allow initial transients to exit the

domain, and statistics were collected over the remaining 80 time units.

Fig. 18 shows the very complex flow pattern inside the main combustion chamber due to the interactions

among the swirling jets exiting the injector and the jets entering the combustion chamber through the inner

and outer dilution holes. Table 3 compares LES predictions of the mass flow through various components
to experiment; good agreement is observed. Fig. 19 defines the various components. Note that �OD� and
�ID� in Table 3 refer to the outer diffuser and inner diffuser, respectively. Also, both columns in Table 3

show LES error. The second column shows the error as a percentage of its experimental value in the

component, while the third column shows the error as a percentage of the mass flow at the inlet.

Section 3.2.2 noted that the present algorithm displays the proper Reynolds number sensitivity over a

range of Reynolds numbers, both with, and without a subgrid model. This observation was made using

homogeneous, isotropic turbulence. Fig. 19 draws the same conclusion in the exceedingly complicated
Fig. 18. Contours of instantaneous velocity magnitude in the Pratt and Whitney combustor geometry.



Table 3

Comparison to experiment of mass-flow splits in the Pratt and Whitney combustor

Location LES Error % wrt expt. LES Error % wrt inlet

OD dilution hole 3.1 0.8

ID dilution hole 3.5 0.5

Core swirler 10.3 0.14

Second swirler 7.5 0.35

Third swirler 0.4 0.02

�OD� and �ID� refer to the outer diffuser and inner diffuser, respectively.

Fig. 19. Contours of instantaneous velocity magnitude in the Pratt and Whitney combustor geometry. (a) high Reynolds number, (b)

low Reynolds number.
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combustor geometry. The figures show contour plots of the velocity magnitude in the central plane. The

computational grid is the same for both plots; the only difference is that the Reynolds number in figure (b)

is a factor of 100 lower than that in figure (a). The qualitative difference between both solutions is striking.

The co-annular streams diverge and set up a recirculation region at high Reynolds numbers. At the lower

Reynolds numbers, no divergence is visible; instead the primary stream issues as a simple jet. This behavior

can be physically explained. The primary swirlers in the central passage generate swirl which then decays as

the fluid proceeds along the passage. At high Reynolds numbers, the swirl decays by negligible amounts so
that the jets that enter the combustor chamber have high levels of swirl. At low Reynolds numbers, the

decay in swirl is large enough that the jets entering the combustion chamber have negligible levels of swirl,

and therefore do not diverge radially. A corollary of these results is that a combination of numerical

dissipation and coarse grids in the central passage can similarly cause the swirl to decay. Excessive dissi-

pation can therefore cause solutions to be wrong even qualitatively.
4. Summary

We have discussed the development of a numerical algorithm and solver capable of performing large-

eddy simulation (LES) in the very complex geometries often encountered in industrial applications. The

algorithm is developed for unstructured hybrid grids, is non-dissipative, yet robust at high Reynolds

numbers on highly skewed grids. Simulation results for the Taylor problem, isotropic turbulence, turbulent
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flow over a cylinder, flow in a coaxial combustor and the flow in an industrial gas-turbine combustor were

discussed. The paper demonstrates the importance of numerical method in large-eddy simulation, and

proposes an algorithm that transitions large-eddy simulation from academic problems to complex indus-
trial flows.
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